Characterization of potential elastase inhibitor-peptides regulated by a molecular switch for wound dressings applications.

نویسندگان

  • Sandra Cerqueira Barros
  • José Alberto Martins
  • João Carlos Marcos
  • Artur Cavaco-Paulo
چکیده

Elastase plays an important role in wound healing process, degrading damaged tissue and allowing complete tissue recovery. The levels of human neutrophil elastase (HNE) are usually controlled by endogenous inhibitors. However, in the presence of high levels of elastase, like the ones present in chronic wounds, the inhibitors cannot overcome this overproduction and the enzyme starts to degrade the surrounding healthy tissue. In this work we report the development of a molecular switch to control the elastase activity in the exudate of non-healing chronic wounds. A peptide library was generated and screened in a microarray format for protein kinase-mediated phosphorylation. Two peptides were identified as casein kinase Iδ (CKI) substrates: KRCCPDTCGIKCL and its analogous peptide KRMMPDTMGIKML, with cysteine residues replaced by methionine residues. These peptides were studied in solution, both in the phosphorylated and non-phosphorylated forms as potential inhibitors for elastase. The obtained results show that the reversible process of phosphorylation/dephosphorylation results in differential inhibitory activity of the peptides. Thus the reversible process of phosphorylation/dephosphorylation can be used as a kind of molecular switch to control elastase activity. Degradation studies reveal that both the inhibitor-peptides and CKI are degraded by elastase. These results envisage the safe utilisation of these inhibitor-peptides together with CKI in the formulation of wound dressings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Production and Characterization of Gelatine Based Electro-spun Nano-fibres as Burn Wound Dressings

Silver sulfadiazine is used to prevent and treat infections of second- and third-degree burns. It kills a wide variety of bacteria. In this study silver sulfadiazine was used in gelatin based electro-spun nano-fibers with various drug to polymer ratios (0, 5, 10, 15 and 20 %). SEM, EDX and FTIR analysis showed that the continuous, bead-free, fine fibers containing silver sulfadiazine as an anti...

متن کامل

Protease inhibition by oleic acid transfer from chronic wound dressings to albumin.

High elastase and cathepsin G activities have been observed in chronic wounds to inhibit healing through degradation of growth factors, cytokines, and extracellular matrix proteins. Oleic acid is a non-toxic elastase inhibitor. Cotton wound dressing material was characterized as a transfer carrier for affinity uptake of oleic acid by albumin under conditions mimicking chronic wounds. The mechan...

متن کامل

Human neutrophil elastase and collagenase sequestration with phosphorylated cotton wound dressings.

The design and preparation of wound dressings that redress the protease imbalance in chronic wounds is an important goal of wound healing and medical materials science. Chronic wounds contain high levels of tissue and cytokine-destroying proteases including matrix metalloprotease and neutrophil elastase. Thus, the lowering of excessive protease levels in the wound environment by wound dressing ...

متن کامل

Development of antimicrobial chitosan based nanofiber dressings for wound healing applications

Objective(s): Chitosan based composite fine fibers were successfully produced via a centrifugal spinning technology. This study evaluates the ability of the composites to function as scaffolds for cell growth while maintaining an antibacterial activity. Materials and methods: Two sets of chitosan fiber composites were prepared, one filled with anti-microbial silver nanoparticles and another on...

متن کامل

Performance of Bioactive Molecules on Cotton and Other Textiles

Four types of biologically active molecules were examined for their structure/activity relationships as applied to textile functionalization. Bio-molecules including enzymes, peptides, carbohydrates, and lipids have been found to retain their activity when linked to cotton fabrics. Wound dressing protection against the protease destruction caused by human neutrophil elastase was examined with c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Enzyme and microbial technology

دوره 50 2  شماره 

صفحات  -

تاریخ انتشار 2012